Browse Tag: hersenen

Mickey Mouse in de maak? Muizen worden slimmer door menselijke hersencellen.

Wat gebeurt er als je menselijke hersencellen in een dierenbrein injecteert? De vraag lijkt weggelopen uit een oude sciencefictionprent. Of, recenter, Rise of the Planet of the Apes, waarin wetenschappers in hun zoektocht naar een geneesmiddel voor Alzheimer apen intelligenter maken, tot die in opstand komen en zich tegen de mensen keren. Dezelfde vraag lijkt tevens de insteek van een artikel dat onlangs in het toonaangevende vaktijdschrift Journal of Neuroscience verscheen. Een team wetenschappers slaagde er namelijk in om muizen te kweken wiens hersenen deels menselijk waren. Deze ‘getunede’ muizen bleken dan ook nog eens slimmer te zijn dan hun soortgenoten die louter beroep deden op hun muizenbrein. In dit artikel worden deze bevindingen verder toegelicht.

Sterren in het brein

 Om de muizenhersenen menselijker te maken, namen de onderzoekers hun toevlucht tot zogenaamde gliacellen. Ook al nemen deze cellen minstens de helft van ons brein in beslag, toch werden ze door hersenwetenschappers jarenlang grotendeels over het hoofd gezien. In tegenstelling tot hun bekendere broertjes, de neuronen of hersencellen, kunnen gliacellen immers niet communiceren via elektrische signalen. Recent steeg de wetenschappelijke belangstelling, toen bleek dat een stervormig type gliacel, de astrocyten, over een eigen vorm van chemische communicatie beschikt. Wetenschappers vermoeden dat dit type cellen de neuronen ondersteunt en de informatiestroom in onze hersenen in goede banen leidt. Er gaan zelfs stemmen op dat deze cellen verantwoordelijk kunnen zijn voor ons bewustzijn. Bovendien zijn menselijke astrocyten, veel meer dan neuronen, mee geëvolueerd: in vergelijking met muizen, is de menselijke astrocyt opmerkelijk groter, met veel meer vertakkingen. Misschien, dacht neurowetenschapper Steven Goldmann, spelen deze astrocyten dan wel een belangrijke rol in wat ons als soort intelligenter maakt?

Slimme muizen

Onder leiding van Goldmann, nam een team onderzoekers de proef op de som door onvolgroeide menselijke gliacellen in het brein van pasgeboren muizen te brengen. De cellen groeiden en verspreidden zich snel doorheen het muizenbrein, waar ze de oorspronkelijke gliacellen verdrongen. Bovendien werden ze perfect geïntegreerd in het netwerk van muizenneuronen. Omdat de menselijke astrocyten een stuk groter zijn en meer vertakkingen hebben, voorspelden de onderzoekers dat het muizenbrein efficiënter zou gaan werken. Een grote testbatterij kon dit alvast bevestigen: zo vonden deze muizen bijvoorbeeld sneller hun weg doorheen een doolhof, en maakten ze een pak minder fouten. De gliacellen leken aldus het leren te verbeteren en het geheugen aan te scherpen.

Nieuwe behandelingen

Het doel van dit onderzoek, zo beweert Goldmann, is niet zozeer om muizen slimmer te maken, maar eerder om tot een beter begrip en mogelijk een nieuwe behandeling voor enkele hersenaandoeningen te kunnen komen. De werking en groei van gliacellen valt in deze muizen immers veel makkelijker te bestuderen dan in een petrischaaltje. Zo hoopt Goldmann bijvoorbeeld dat de muizen helpen om schizofrenie beter te begrijpen. Daarnaast ziet hij een toepassing in de behandeling van multiple sclerose. Deze neurologische aandoening wordt gekenmerkt door de aantasting van de myelineschede rond hersencellen. Dit eiwit isoleert de neuronen en garandeert een goede impulsgeleiding. Goldmann injecteerde onvolgroeide menselijke gliacellen in muizenjongen met een tekort aan myeline. Deze groeiden uit tot cellen die specifiek instaan voor het aanmaken van myeline, alsof ze het tekort detecteerden en ervoor compenseerden. Goldmann hoopt in de toekomst MS-patiënten met gliacellen te kunnen behandelen.

Ethische vragen

Desalniettemin roept deze studie duidelijk enkele ethische vragen op. Is het verantwoord om andere diersoorten als proefkonijn te gebruiken om onze hersenen beter te kunnen begrijpen? En maken we, door muizenhersenen meer menselijk te maken, muizen niet enkel slimmer, maar ook menselijker? Goldmann lijkt dit laatste alvast niet te onderschrijven. Hij benadrukt dat de proefdieren nog steeds over een muizenbrein, en geen mensenbrein, beschikken: de hersencellen blijven die van de muis. De menselijke cellen maken dit netwerk efficiënter, maar geven de muizen geen nieuwe vaardigheden die we als typisch menselijk zouden beschouwen. Toch kan je je de vraag stellen waar dan de grens van het ethisch aanvaardbare ligt. Wat als dieren door gelijkaardige interventies een hogere en dus meer menselijke vorm van bewustzijn beginnen te ontwikkelen? Goldmann blies alvast een soortgelijk onderzoek bij apen af wegens ethische bezwaren.

Besluit

Dat menselijke cellen in een muizenbrein kunnen worden opgenomen en groeien, is in wetenschappelijk opzicht opzienbarend.

Deze studie biedt perspectief om mensen met een hersenaandoening in de toekomst beter te behandelen. Maar bovenal toont dit onderzoek de nood aan van een maatschappelijk debat over wat al dan niet ethisch door de beugel kan.

Auteurs

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten.

Jelle Demanet is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de Ugent en is gefascineerd door alles wat met de hersenonderzoek te maken heeft. Door middel van fMRI tracht hij de hersenmechanismen verantwoordelijk voor intentionele en cognitieve controle in kaart te brengen. Op twitter kan je hem volgen als @jeldeman.

 

Lezen, hoe doen we dat?

Het is herfstvakantie, dus gaan we weer met zijn allen naar de boekenbeurs om een voorraad lectuur in te slaan. Maar hoe doen we dat eigenlijk, lezen?

Het is niets voor ons

Lezen is uw ding niet, zegt u? Groot gelijk. Pas een slordige 6000 jaar geleden vonden de Chinezen het schrift uit, gevolgd door de Sumeriërs, Egyptenaren en Maya’s. Een peulenschil voor de evolutie. U heeft misschien zelfs nog een overgrootvader gekend die niet het geluk had om op school te leren lezen. Onze hersenen zijn dan ook eigenlijk niet gemaakt om te lezen. Ze zijn wel zo flexibel dat ze hersencellen in het ventraal occipitotemporaal gebied (onderaan en achteraan de hersenen dus) konden recycleren en gebruiken om letters te ontcijferen. Dichtbij dat gebied wordt ook andere visuele informatie verwerkt, zoals gezichten, huizen en allerlei andere voorwerpen. Woorden konden er dus nog wel bij.

Letters worden naar links gestuurd…

Wij Belgen lezen van links naar rechts. Als we dat bekijken met een eyetracker, een toestel dat onze oogbewegingen kan registreren, dan zien we dat onze ogen meestal in de eerste helft van een woord landen. Dat komt goed uit, want zo staan de meeste letters aan de rechterkant en worden ze naar onze linkerhersenhelft geprojecteerd. Onze optische banen kruisen namelijk deels waardoor visuele info naar de andere kant wordt gezonden. De meeste mensen hebben vooral hun linkerhersenhelft nodig als ze met taal bezig zijn (spreken, luisteren, …). Dus als de meeste letters al rechts staan, dan moeten er minder letters overgedragen worden naar de andere hersenhelft. Dat spaart tijd om nog een paar extra bladzijden te lezen voor het slapengaan.

… of toch naar rechts?

Als u linkshandig bent, heeft u 25% kans dat uw hersenen wat anders georganiseerd zijn en toch  woorden vooral aan hun rechterzijde verwerken (zie ook deze blogpost). Aangezien spraak de meest uitgesproken voorkeur voor links of rechts heeft, testten onderzoekers eerst de hersendominantie terwijl linkshandigen woorden opsomden die met een bepaalde letter beginnen (zoals het dierenspelletje op de achterbank van de auto). Daarna lazen de testpersonen woorden in stilte in de scanner. Degenen die de meeste spraakhersencellen rechts activeerden tijdens de opsomtaak, bleken ook rechtsdominant te zijn terwijl ze woorden lazen. Daar is een logische verklaring voor: Als je leest, is ook het spraakgebied actief. Probeer dat stemmetje in je hoofd maar eens te doen zwijgen terwijl je deze tekst in stilte leest. Het lees- en spraakcentrum liggen daarom best in dezelfde hersenhelft om optimaal te kunnen communiceren.
Bewegen de ogen van die atypische linkshandigen dan niet trager als de meeste letters nog van links naar rechts moeten gebracht worden? Nee, want ze zijn blijkbaar zo slim geweest om hun ogen iets meer naar het woordeinde toe te richten zodat het tijdverlies beperkt wordt. Apps voor snellezen zoals Spritz zouden dus beter voor hen een aangepaste versie maken, mochten die apps al werken.

En u?

Ben je nieuwsgierig geworden of jij nu meest je linker- of rechterhersenhelft gebruikt om deze tekst te lezen? Kom het dan zelf testen op 23 november tijdens iBrain, een festival over hersenen georganiseerd door Breinwijzer vzw. Nog meer informatie kom je te weten tijden hun lezing op 13 november, of door je als linkshandige kandidaat te stellen voor wetenschappelijk onderzoek via deze website.

Auteur

Lise Van der Haegen is post-doctoraal researcher aan de vakgroep experimentele psychologie van de UGent. Ze onderzoekt hoe onze linker- en rechterhersenhelft samenwerken tijdens taalverwerking (lezen, spreken, …). Daarnaast vergelijkt ze de hersenorganisatie van links- en rechtshandigen op het gebied van taal en gezichtsherkenning. Ze is lid van het Centrum voor Leesonderzoek en is medelesgever bij de vakken neuropsychologie en algemene psychologie.

 

Op zoek naar tekenen van bewustzijn.

Even vlug testen of je bij bewustzijn bent? Stel jezelf de vraag wie en waar je bent, en wat er om je heen gebeurt. Zo simpel is het. Voor wetenschappers blijft het bewustzijn echter niet zo makkelijk vast te pinnen. Ook in de klinische praktijk is het vaak moeilijker na te gaan. Want hoe meet je bewustzijn bij patiënten die niet meer kunnen spreken, en niet langer op prikkels lijken te reageren? Met behulp van geavanceerde beeldvormingstechnieken slagen hersenonderzoekers er steeds beter in om bewustzijn in het brein te herkennen, en de onderliggende netwerken in kaart te brengen. Door hersensignalen te decoderen, kunnen wetenschappers tegenwoordig ook de antwoorden op simpele ja/neen-vragen, de herkenning van bekende gezichten of de ervaren suspense tijdens een thriller rechtstreeks uit het brein aflezen. Deze wetenschappelijke doorbraken helpen ons niet alleen het mysterie van het bewustzijn te ontrafelen, maar zijn ook hoopgevend om sporen van bewustzijn te detecteren bij patiënten in een vegetatieve toestand. Een aantal van deze patiënten lijken immers wel degelijk bewust te zijn, ook al geven ze schijnbaar geen teken van leven meer.

Bewustzijn in het brein

Vermaard Belgisch neuroloog Steven Laureys doet al enkele jaren grensverleggend onderzoek naar minimaal bewustzijn in vegetatieve patiënten. Hij pleit voor de toepassing van hersenscans in de klinische praktijk, als aanvulling op de bestaande gedragstesten die de mate van bewustzijn in patiënten trachten vast te stellen. Laureys vond namelijk dat een aantal vegetatieve patiënten wel degelijk tekenen van bewustzijn vertonen op de hersenscans, ook al slagen deze patiënten er niet in om hun gedachten met de buitenwereld te delen. Door de scans van de patiënten te vergelijken met die van een gezonde controlegroep, kwam het achterste deel van de pariëtale hersenschors naar voor als een belangrijk bewustzijnscentrum. In rusttoestand toont dit hersengebied normaliter de meeste activiteit. Bij vegetatieve patiënten ziet men in dit gebied het minste energieverbruik. Sommige patiënten vertonen echter wel nog enige activiteit ter hoogte van dit bewustzijnscentrum. Bij hen is er sprake van een minimaal bewustzijn. Maar hoe kan men communiceren met iemand die geen teken van leven meer lijkt te geven?

Ja of neen

De uitdaging bestaat erin om gedachten rechtstreeks uit het brein af te lezen. En dat lukt hersenwetenschappers tegenwoordig al redelijk goed. In een recente studie met gezonde proefpersonen konden de onderzoekers alvast een goed rapport voorleggen: ze slaagden erin de antwoorden op simpele ja/neen-vragen uit de hersensignalen te ontcijferen met een precisie van ongeveer 90%. Daartoe legden ze de proefpersonen in de scanner enkele vragen voor (bv., ‘Ben je getrouwd?’) en vroegen hen daarna selectief hun aandacht richten op het juiste antwoord (‘ja’ of ‘neen’). Ook bij patiënten werd al een gelijkaardige, zij het iets meer omslachtige methode toegepast. De onderzoekers trainden de patiënten om zich voor te stellen dat ze ofwel aan het tennissen, ofwel door hun huis aan het wandelen waren. Opnieuw werden enkele eenvoudige vragen gesteld. Door of aan tennis (‘ja’), of aan hun wandeltocht door het huis (‘neen’) te denken, probeerden de patiënten te antwoorden. Enkelen onder hen slaagden daar effectief in. In een onlangs verschenen studie werd met behulp van elektroden de elektrische activiteit van de hersenen bij deze minimaal bewuste patiënten in kaart gebracht. De onderzoekers toonden dat de rijke hersenverbindingen en netwerken die bij gezonde proefpersonen in bewuste toestand teruggevonden worden ook bij deze patiënten grotendeels intact zijn. Onderstaande figuur geeft dit bewustzijnsnetwerk weer bij een vegetatieve patiënt (links), een minimaal bewuste patiënt (midden) en een gezonde controlepersoon (rechts). Deze techniek is een veelbelovend alternatief voor de complexere, duurdere en tijdrovende hersenscans.

Hitchcock in de scanner

Patiënten in een vegetatieve toestand lijken niet langer in staat connectie te maken met de buitenwereld. Ze herkennen de familie naast hun bed niet meer, en geven geen blijk van emoties. Recent onderzoek geeft echter aan dat bij een aantal van die patiënten het brein wel hevig reageert op deze prikkels. Zo toonden onderzoekers dat het hersengebied dat specifiek oplicht bij het zien van gezichten, ook actief werd wanneer de patiënten foto’s te zien kregen. Waren dat foto’s van vrienden of familie van de patiënt, merkten de onderzoekers op dat ook andere hersengebieden oplichtten die gelinkt zijn aan het autobiografische geheugen. Deze bevindingen suggereren dat sommige vegetatieve patiënten wel degelijk de mensen in hun nabije omgeving herkennen. Andere onderzoekers gingen nog een stap verder, en vergeleken hoe de hersenen van een vegetatieve patiënt en van een gezonde proefpersoon reageren op een kortfilm van Alfred Hitchcock, de meester van de suspense. Ze vonden dat de patronen in de hersenactiviteit van de patiënt heel gelijkaardig waren aan die van de gezonde proefpersoon. Het brein van de patiënt leek even hard mee te leven met het hoofdpersonage tijdens de spannende scènes. De onderzoekers concludeerden dat dit niet enkel aantoont dat de patiënt nog bij bewustzijn is, maar ook dat hij de film begrepen had. Deze bevindingen werden onlangs gepubliceerd in het toonaangevende tijdschrift Proceedings of the National Academy of Sciences.

Besluit

De opmars van geavanceerde beeldvormingstechnieken stelt wetenschappers steeds meer in staat om het ogenschijnlijk ongrijpbare bewustzijn in kaart te brengen. Daarnaast zijn hersenscans van goudwaarde voor clinici om tekenen van bewustzijn op te sporen bij patiënten die door breinschade niet langer lijken te reageren op hun omgeving. Tezelfdertijd slagen onderzoekers er beter en beter in om gedachten en gevoelens rechtstreeks uit hersensignalen af te leiden. Deze ontwikkelingen helpen patiënten bij wie vroeger geen enkele communicatie mogelijk bleek, terug een stem te geven. Hierdoor groeit de hoop deze patiënten in de toekomst een betere zorg en behandeling aan te bieden.

Auteur

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten.

 

Telepathie: zeg eens hallo met je brein!

Tot op vandaag is telepathie vooral vertrouwd terrein voor schrijvers van sciencefictionverhalen en New Age-adepten. Mensen die met elkaar weten te communiceren zonder daarvoor hun stem, handen of andere hulpmiddelen nodig te hebben; het idee van zo’n zesde zintuig prikkelt de fantasie. Toch lijkt de wetenschap de fictie steeds meer bij te treden: onderzoekers slaagden er onlangs in een boodschap vanop 7500 kilometer afstand direct in iemands brein te laten toekomen. Er kwam geen spraak of lichaamstaal aan te pas, louter de elektrische activiteit onder onze hersenpan. De onderzoekers beweren dat dit soort hypercommunicatie in de erg nabije toekomst onze maatschappij drastisch kan veranderen. Maar wat vonden ze precies?

Hallo uit India

Het experiment zag er als volgt uit: een persoon in Kerala, India, seinde twee woorden (‘hola’, een Spaans hallo, en ‘ciao’, een Italiaans vaarwel) via internet naar een tweede persoon in Straatsburg, Frankrijk. Op zich niets wereldschokkends, ware het niet dat de persoon in Straatsburg geblinddoekt en met oordopjes de boodschap diende te ontcijferen. Om twee breinen met behulp van een computer rechtstreeks te laten communiceren, moesten de onderzoekers twee verbindingen tot stand zien te brengen: één tussen het ene brein en een computer, en een tweede tussen een computer en het andere brein.

Langs de kant van de zender in India, werden elektrische signalen omgezet in een reeks nullen en enen, die de binaire code van de woorden ‘ciao’ en ‘hola’ voorstelden. Hiertoe moest de proefpersoon in gedachten ofwel zijn handen, ofwel zijn voeten bewegen. Een elektrodenmuts pikte deze hersensignalen op en stuurde ze door naar de computer. Die vertaalde op zijn beurt het signaal in een binaire code, waarop de computer de informatie via Internet naar een mailbox in Frankrijk zond.

You’ve got mail

Daar toegekomen, werden de reeks nullen en enen gebruikt om een gerobotiseerde hersenstimulator aan te sturen. In het geval van een één, wekte de stimulator een magnetische puls op in het brein ter hoogte van de visuele cortex, de plek in de hersenen die visuele waarneming mogelijk maakt. Door de stimulatie kreeg de proefpersoon in Straatsburg kort een lichtflits te zien. In het geval van een nul, bleef die lichtflits uit. Zodoende slaagden de onderzoekers erin met een hoge nauwkeurigheid de korte boodschappen rechtstreeks van het ene brein in het andere te sturen. Ze publiceerden deze bevindingen recent in het vaktijdschrift PloS ONE (afbeelding © Giulio Ruffini, PloS ONE)

Baanbrekend?

De studie is in enkele opzichten uniek te noemen: het is de eerste keer dat wetenschappers erin slagen een rechtstreekse hersenverbinding tussen twee mensen tot stand te brengen. Over een grote afstand. En dat terwijl de proefpersonen volledig bij bewustzijn zijn. Vorig jaar nog werd het brein van een proefpersoon met succes aan dat van een verdoofde rat gekoppeld. Het opzet van dat experiment was in vele opzichten gelijkaardig. Alleen werden de hersensignalen gebruikt om de motorische cortex, het hersengebied verantwoordelijk voor beweging, van de rat aan te sturen. Aldus slaagden de onderzoekers erin om de proefpersonen een rattenstaart te laten bewegen met hun brein.

Ook al klinken deze experimenten behoorlijk futuristisch en baanbrekend, loopt men best niet té hard van stapel. Zo bestaat de technologie om elektrische informatie uit het brein op te vangen en hiermee een computer aan te sturen reeds vele jaren. Daarnaast is de techniek om via breinstimulatie visuele prikkels en bewegingen op te wekken ook niet bepaald nieuw. En dat je makkelijk binaire informatie via het internet kan verzenden, zal niemand nog verbazen. De grote technische meerwaarde van deze studies ligt vooral in het inventief combineren van deze technologieën. Hiermee werd een stevige fundering gelegd voor verder onderzoek.

Besluit

Het spannende idee om hersenen rechtstreeks met elkaar contact te laten maken, lijkt voor een stuk meer werkelijkheid en minder fictie te worden: onderzoekers stuurden met succes een boodschap rechtstreeks het brein binnen. Het doet ons fantaseren over een toekomst waarin gedachten, maar ook dromen en gevoelens veel makkelijker te communiceren vallen. Voorlopig blijft hypercommunicatie tussen hersenen echter vooral nog een hoop gedoe: de opstelling om de communicatie mogelijk te maken, is op zijn zachtst gezegd redelijk complex, terwijl de boodschap zelf erg eenvoudig blijft: een reeks enen en nullen. Toch blijft het een eerste, belangrijke stap in een ongelooflijk boeiend onderzoeksproject. Benieuwd wat de toekomst brengt.

Auteurs

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten.

Jelle Demanet is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de Ugent en is gefascineerd door alles wat met de hersenonderzoek te maken heeft. Door middel van fMRI tracht hij de hersenmechanismen verantwoordelijk voor intentionele en cognitieve controle in kaart te brengen. Op twitter kan je hem volgen als @jeldeman.

 

Linkshandig? Gelukkige feestdag!

Gelukkige linkshandigendag!

Als zelfs komkommers een feestdag hebben dan verdienen linkshandigen ook wel wat meer aandacht, moet iemand in 1992 gedacht hebben. Sindsdien werd 13 augustus omgedoopt tot Dag van de Linkshandigen. Tot de festiviteiten hoort het jaarlijks terugkeren van al dan niet wetenschappelijk gegronde mythes. Een greep uit het aanbod.

Linkshandigen zijn creatiever

Paul McCartney, Elvis Costello, Michael Stipe, … Een lijstje linkshandige creatievelingen is makkelijk te vinden op internet. Om rechtshandige muzikanten op te sommen heb je het internet echter niet eens nodig. Het is een denkfout dat meer links-dan rechtshandigen creatieve beroepen uitoefenen. Je kan het vergelijken met de doorgaans grotere angst voor een vliegtuigreis dan een autorit, omdat een vliegtuigcrash meer aandacht krijgt.

Nieuw-Zeelandse onderzoekers vonden wel dat studenten die zelf zeggen dat ze niet alles met hun rechterhand doen meer creatieve prestaties op hun palmares hebben (bijvoorbeeld een diploma aan een muziekacademie). Het verband verdween echter als ze handvoorkeur maten door te tellen hoeveel keer de deelnemers in 10 seconden op een knop drukten met hun linkse of rechtse hand. Wellicht ben je dus niet creatiever als je linkerhand sneller is, maar wel als je af en toe bewust eens iets met je niet-dominante hand uitprobeert. Linkshandigen kunnen creatiever lijken, omdat ze doorgaans een minder uitgesproken handvoorkeur hebben dan rechtshandigen.

Linkshandigen leven minder lang

Linkshandig zijn is geen reden tot paniek. Het helpt wel om handig te zijn, zodat je geen ongelukken veroorzaakt met al die toestellen die op rechtshandigen afgestemd zijn. Ook de genetica lijkt linkshandigen enigszins tegen te werken. Zo wordt het aantal linkshandigen onder schizofrenen op 15% geschat, hoewel slechts 10% van de hele populatie linkshandig is. Een verklaring hiervoor werd nog niet gevonden. De Nieuw-Zeelandse creativiteitsstudie mat schizotypische persoonlijkheidskenmerken met een vragenlijst die peilde naar het geloof in verbanden die er eigenlijk niet kunnen zijn, bijvoorbeeld Soms denk ik aan mensen omdat zij net op dat moment ook aan mij dachten. Opnieuw vonden ze enkel een link met minder uitgesproken handvoorkeur en niet met linkshandigheid op zich.

Nog geruststellender is dat linkshandig zijn zelfs voordelen zou kunnen hebben. Waarom zouden ze evolutionair gezien anders nog steeds bestaan? Je kan er je tegenstander bijvoorbeeld mee verrassen tijdens een sportwedstrijd, en dan vooral als je een interactieve sport beoefent zoals judo (bij zwemmen is het iets moeilijker er voordeel uit te halen). Dit wordt de gevechtshypothese genoemd. De wetenschap zou de wetenschap echter niet zijn mocht ook deze theorie niet tegengesproken worden. Een Nederlandse doctoraatsstudente vond dat er niet meer linkshandigen waren bij een Papoea-Nieuw-Guineese stam die niet vies is van wat man-tot-man gevechten, wat de gevechtshypothese wel zou verwachten. Er werden wel meer linkshandigen geteld in landen waar men meer geld uitgeeft aan gezondheidszorg.

Linkshandigen hebben andere hersenen

Sommige linkshandigen wel, ja. Als je spreekt, activeer je bijvoorbeeld vooral je linkerhersenhelft, maar bij zo’n 10 tot 20% linkshandigen domineert de rechterhersenhelft. Voor gezichtsherkenning ligt het dan weer anders. Daarbij gebruiken rechtshandigen meer hun rechterhersenhelft dan linkshandigen. Om nog een laatste mythe de wereld uit te helpen: Geen enkele functie wordt verwerkt in slechts één hersenhelft. Linkshandigen zijn dus zeker niet creatiever, omdat ze op hun rechterhersenhelft zouden steunen.

Linkshandigen, verenig u!

Ben je zelf linkshandig en wil je graag de wetenschap vooruit helpen? Aarzel niet om ons te contacteren via deze link. Linkshandigen kunnen unieke informatie geven over de werking van onze hersenen, net omdat ze meer variatie brengen in onderzoeksresultaten. Zeker in Nederland en België kunnen ze pioniers worden, want de Lage Landen hebben met 13 tot 14% het hoogste percentage linkshandigen in de wereld! Misschien moeten die rechtshandigen dus terecht nog maar even wachten op hun feestdag.

Meer lezen

Auteur

Lise Van der Haegen is post-doctoraal researcher aan de vakgroep experimentele psychologie van de UGent. Ze onderzoekt hoe onze linker- en rechterhersenhelft samenwerken tijdens taalverwerking (lezen, spreken, …). Daarnaast vergelijkt ze de hersenorganisatie van links- en rechtshandigen op het gebied van taal en gezichtsherkenning. Ze is lid van het Centrum voor Leesonderzoek en is medelesgever bij de vakken neuropsychologie en algemene psychologie.

 

Waarom je met Spritz niet vier keer sneller zult lezen.

De media werden de voorbije weken overspoeld door een uitgekiende reclamecampagne van Spritz, een bedrijf dat een app op de markt bracht waarmee men vier keer sneller zou kunnen lezen. De app wordt binnenkort standaard meegeleverd met de nieuwe Samsung Galaxy S5 smartphone. Ook gelijkaardige concurrenten zijn populair. Flash reader, een app die ongeveer hetzelfde doet, is momenteel de veertiende meest gedownloade betalende app in de Vlaamse iTunes winkel. Helaas zal Spritz u niet toelaten vier keer sneller te lezen. We vertellen u waarom.

Oogbewegingen

Spritz vertrekt vanuit twee uitgangspunten. Het eerste is de claim dat we slechts 20% van de tijd dat we naar een bedrukt blad papier kijken zouden bezig zijn met de verwerking van de tekst. De andere 80% van de tijd, zo claimt Spritz, zijn onze ogen bezig met bewegen door de tekst. Klopt dit?

Uit leesonderzoek (voor een overzicht, zie Rayner, 1998) weten we dat onze ogen tijdens het lezen niet als een volgspot door de tekst glijden. We kiezen een bepaalde plek uit en blijven daar enige tijd naar kijken. Dat noemen we fixaties. We doen dat ongeveer 3 à 4 keer per seconde, en elke fixatie duurt gemiddeld 250 milliseconden. Na elke fixatie wordt een nieuwe plek uitgekozen en bewegen de ogen naar de volgende fixatie. Dat noemen we saccades (zie filmpje).

Ze duren 20 tot 40 milliseconden, en tijdens die periode zijn we virtueel blind (wat we overigens niet merken). We slagen er zo in ongeveer 250 woorden per minuut te lezen. Spritz presenteert alle woorden van een tekst op dezelfde plaats. Dit is niet nieuw. Reeds sedert de jaren zeventig gebeurt leesonderzoek met snelle seriële visuele presentatie (rapid serial visual presentation). Met deze techniek kunnen Spritz lezers telkens op de zelfde plek fixeren, en spaart men dus die saccades uit. Dit levert een potentiële besparing op, die echter veel kleiner is dan wat Spritz beweert. De saccades nemen immers slechts een dikke 10% van onze leestijd in beslag, geen 80%. Bovendien is het zo dat de verwerking van de tekst de hele tijd doorgaat, zelfs al is er even geen visuele informatie. Het brein wacht dus niet op de ogen, en is zeker geen 80% van de tijd werkloos. Integendeel, de ogen volgen de snelheid van de cognitieve verwerking in het brein.

Fixatiepunt

Het tweede uitgangspunt van Spritz is interessanter. Spritz laat lezers telkens naar dezelfde plek kijken maar presenteert de woorden niet netjes rond het midden van deze plek. Men zorgt er integendeel voor dat mensen naar de linkerkant van het woord kijken, naar wat Spritz het “optimal recognition point” noemt. Dit is niet nieuw. In 1984 ontdekte O’Regan reeds het optimal viewing position effect: mensen herkennen woorden inderdaad sneller als ze de linkerkant van het woord fixeren. Dat komt omdat een woordbegin informatiever is voor welk woord er staat dan een woordmidden of –einde, en omdat informatie in het rechter visueel veld terecht komt in de linker hersenhelft, waar taal meestal verwerkt wordt. Allerminst nieuw dus, maar dit heeft Spritz goed gezien. Het levert echter geen enorm voordeel op, gezien ook bij normaal lezen onze ogen automatisch steeds zullen fixeren dicht bij die optimale plek. We doen dat sowieso, ook als we een boek lezen op papier.

Nadelen

De techniek van Spritz heeft ook enkele nadelen. Ten eerste is het zo dat lezers normaal gezien af en toe (10-15% van alle fixaties) terugkeren naar reeds gepasseerde woorden omdat de verwerking niet kon volgen. Dit is niet mogelijk in Spritz, en deze informatie zal dus verloren gaan. De woordenstroom gaat altijd verder. Sommige woorden (opnieuw 10-15%), die eerder lang of zeldzaam zijn, worden ook tijdens lezen meerdere keren gefixeerd. Ook dat is niet mogelijk in Spritz, en deze woorden zullen niet begrepen worden. Bovendien is het zo dat ons brein ook al enigszins de tekst verwerkt die rechts staat van waar we naar kijken, dus meer dan 1 woord tegelijk. De breedte van deze verwerking noemt men de perceptuele span. Die bedraagt 3-4 letters links van de fixatie maar 15 letters rechts van de fixatie (dit laat ons bijvoorbeeld toe de optimale plaats van de volgende fixatie te plannen). In Spritz wordt slechts 1 woord tegelijk gepresenteerd en dus wordt deze extra verwerking onmogelijk. Tenslotte, soms gaat de verwerking van tekst in het brein ook sneller dan verwacht. Het brein weet dan al wat er komt, en de oogbeweging wordt overeenkomstig geprogrammeerd. Woorden worden dan overgeslagen. Inhoudswoorden (bv. zelfstandige naamwoorden) worden bijvoorbeeld in 15% van de gevallen gewoon niet bekeken. Voor functie- en bijwoorden (zie het woordje ‘in’ in bovenstaande figuur) is dat zelfs 65%. Deze tijdswinst vervalt in Spritz, waar élk woord gepresenteerd wordt.

Kunnen we dan echt niet sneller lezen dan 250 woorden per minuut? Als je mensen 1000 woorden per minuut laat zien, zoals Spritz, zullen ze wel degelijk iets oppikken. Ook dat is niet nieuw. Ook bij het lezen op papier kan je mensen trainen om grotere saccades te maken en zo sneller door een tekst te gaan, maar ten koste van het aantal woorden dat bekeken of goed verwerkt wordt. In 1987 onderzocht men reeds of snellezen aan 600 woorden per minuut (dus bijna de helft trager dan wat Spritz claimt) leidt tot slechter tekstbegrip. Men vond dat oppervlakkige inhoud even goed begrepen werd, maar details, dieper tekstbegrip en het geheugen voor de tekst was wel degelijk veel slechter. Om het met Woody Allen te zeggen: “I took a speed-reading course and read War and Peace in twenty minutes. It involves Russia.”

Om de grote lijnen van een nieuwsbericht op te pikken kan dit dus volstaan, maar om een tekst goed te begrijpen, of te bestuderen, zeker niet. En zeker als men leest omwille van de esthetische ervaring (romans), gaat het hele punt van lezen natuurlijk in de techniek verloren.

Conclusie

De techniek van Spritz is interessant om tekst te presenteren op een heel klein scherm, zoals bijvoorbeeld bij digitale slimme horloges, of op Google Glasses. Maar het laat je niet toe om teksten vier keer sneller te lezen. De potentiële tijdswinst is beperkt, en zal ten koste gaan van het begrip.

Referenties

  • Just, M.A., & Carpenter, P.A. (1987). The Psychology of Reading and Language Comprehension. Boston: Allyn & Bacon.
  • O’Regan, J.K., Levy-Schoen, A., Pynte, J., Brugaillere, B. (1984). Convenient fixation location within isolated words of different length and structure. Journal of Experimental Psychology: Human Perception and Performance, 10 (2), pp. 250–257.
  • Rayner, K. (1998). “Eye movements in reading and information processing: 20 years of research.”. Psychological Bulletin 134 (3): 372–422

 

 

Over vrije wil en andere illusies.

Wij  zijn voor een groot deel gedetermineerd door elementen die we niet zelf in handen hebben. Zo blijkt bijvoorbeeld dat hormonen die we ontvingen in de baarmoeder onze seksuele voorkeur mee bepalen en dat genen onze alcoholconsumptie beïnvloeden. Anderzijds blijkt ook onze omgeving een grote invloed te hebben, voornamelijk in onze kindertijd. Zo hebben mensen die in een omgeving opgegroeid zijn waar de lucht sterk vervuild is, gemiddeld een lager IQ.

Ook impulsbeheersing en wilskracht worden door al deze factoren bepaald. Daarom kunnen we ons afvragen of we wel zelf verantwoordelijk zijn voor onze beslissingen en daden.

De scanner weet meer dan jij…

In een experiment wilden Soon en collega’s nagaan of onze beslissingen al vastliggen nog voor we ons daar bewust van zijn. In hun studie werden mensen getest in een fMRI-scanner. Dit is een hersenscanner die meet welke delen in de hersenen het meest zuurstofrijk bloed verbruiken. Daaruit wordt dan afgeleid welke hersengebieden het meest actief zijn bij een bepaalde taak. Aan de deelnemers die in de scanner lagen, werd gevraagd om op één van twee knoppen te drukken. Ze mochten zelf kiezen wanneer ze drukten en op welke knop ze drukten. Op basis van hun hersenactiviteit konden de onderzoekers meer dan zeven (!) seconden voor dat de deelnemers dachten “nu ga ik op de knop drukken”, reeds boven kansniveau voorspellen op welke knop ze zouden drukken.

Deze resultaten suggereren dat onze hersenen al besloten hebben op welke knop we zullen drukken nog vóór we ons bewust zijn van deze beslissing. Daardoor werd het oeroude debat over het al dan niet bestaan van vrije wil weer aangewakkerd. Velen stellen zich de vraag of ons bewustzijn de oorzaak is van ons gedrag of dat ons gedrag wordt geregeld door het onbewuste en het bewuste slechts een illusie is die achteraf wordt gecreëerd. Ongeveer 200 jaar geleden stelde de filosoof Schopenhauer al dat vrije wil een illusie is. En ook nu zijn er steeds meer auteurs die beweren dat (de beste) beslissingen genomen worden door ons onbewuste.

… maar die scanner meet (gelukkig) niet perfect

De resultaten van dit experiment moeten echter –zoals altijd in de wetenschap– genuanceerd worden. Op basis van de fMRI-data konden slechts 60% van de beslissingen correct voorspeld worden. Hoewel dit beter is dan kansniveau, kunnen we ons de vraag stellen waarom de beslissingen niet met 100% zekerheid voorspeld kunnen worden. Dit is ten minste voor een deel te wijten aan de kwaliteit van de scanners. Omdat met een fMRI scanner geen hersenactiviteit, maar een indirecte maat (nl. het percentage zuurstofrijk bloed) gemeten wordt, is het onmogelijk om een perfecte voorspelling te maken. De cruciale vraag is dus of men met een perfecte meetmethode beslissingen wel met volledige zekerheid zou kunnen voorspellen?

Wat denken de auteurs hier zelf van?

Eén van de auteurs, Prof. John-Dylan Haynes vermeldde in een debat dat hij gelooft dat onze daden volledig gedetermineerd zijn door onze vroegere ervaringen. Volgens hem zou een perfecte machine in theorie dus ons beslissingsgedrag foutloos kunnen voorspellen. Een perfecte voorspelling op langere termijn zal volgens hem echter moeilijk blijven omdat we steeds dingen kunnen meemaken die ons hersenpatroon – en dus ook onze beslissingen – veranderen. Een andere auteur van deze studie, Prof. Marcel Brass, gelooft ook dat onze beslissingen voor een deel gestuurd worden door onze ervaringen. In tegenstelling tot Haynes gelooft hij echter niet dat ons gedrag ooit perfect voorspeld zal kunnen worden op basis van hersenactiviteit voorafgaand aan onze bewuste beslissing. Volgens hem blijft er een rol weggelegd voor het bewuste waardoor we onze beslissingen bijvoorbeeld altijd nog op het laatste moment kunnen aanpassen. Voorlopig zijn dit allemaal nog slechts meningen, maar de wetenschap lijkt steeds meer in staat om ingenieuze proefopstellingen te ontwikkelen om deze vraag verder te onderzoeken. Benieuwd in welke richting dit ons zal leiden!

(De illusie van) vrije wil is belangrijk

Maakt het nu eigenlijk iets uit in ons dagelijkse leven of we geloven in de vrije wil? Tangney en collega’s toonden aan van wel. Hoe meer we geloven in vrije wil, hoe meer we bereiken in het leven en hoe minder zelfdestructief gedrag we zullen vertonen. Volgens de onderzoekers komt dit doordat mensen die geloven in vrije wil meer zelfcontrole uitoefenen. Daarnaast deden Vohs en collega’s een experiment waarin ze het geloof in de vrije wil manipuleerden. De deelnemers kregen een aantal stellingen te lezen. De ene helft las zinnen over het bestaan van de vrije wil, terwijl de andere helft te lezen kreeg dat vrije wil niet bestaat. Daarna moesten de deelnemers een cognitieve test afleggen. Plots vertelde de proefleider hen dat hij dringend weg moest, maar dat ze zichzelf één euro per goed antwoord mochten uitbetalen na afloop van het experiment. De deelnemers die gelezen hadden dat vrije wil niet bestaat, namen (onterecht) veel méér geld dan de anderen. Mensen die geloven dat de vrije wil niet bestaat lijken zich dus asocialer te gedragen.

Vrije wil is dus zoals de voetgangersknop aan een verkeerslicht. Als je gelooft dat het licht sneller op groen gaat springen door op die knop te drukken, ga je daarna gelukkiger het zebrapad oversteken.

Als je gelooft dat je controle kan uitoefenen op je beslissingen, ga je meer bereiken in het leven. Dus los van de vraag of vrije wil een illusie is, is het voor ons persoonlijk welzijn belangrijk dat we in de vrije wil blijven geloven!

Referenties

  • Soon, C.S., Brass, M., Heinze, H.J., & Haynes, J.D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience 11, 543 – 545.
  • Tangney, J.P., Baumeister, R.F., & Boone, A.L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271 – 324.
  • Vohs, K.D., & Schooler, J.W. (2008). The value of believing in free will: Encouraging a belief in determinism increases cheating. Psychological Science, 19, 49 – 54.

Deze blogpost verscheen eerder op Studio Brein, een initiatief van Breinwijzer vzw.

Auteur: Sarah Beurms

Sarah Beurms is doctoraatsstudente in de Leerpsychologie aan de KUL.

 

Dominante hersenhelft: de mythe doorprikt.

“Weten welke hersenhelft dominant is, kan wonderen doen voor je studies en/of je carrière”, beweerde hln.be recent. Want net zoals het gaat bij schrijven of voetballen, heb je bij het oplossen van problemen een voorkeur voor links of rechts. Klinkt logisch, toch?

Links versus rechts

Wie liefst elk probleem nauwgezet analyseert, zich graag verliest in de details, en daarbij telkens de ratio boven alles stelt, laat zich vooral leiden door de linkerhersenhelft. Wie daarentegen vooral vertrouwt op het buikgevoel en een creatieve oplossing verkiest, rekent vooral op de rechterzijde van het brein. Een eenvoudige tweedeling dringt zich op: de pragmatische analyticus versus de creatieve chaoot.

En het wordt nog mooier: aan de hand van een korte test vis je eenvoudigweg uit welk hersendeel bij jou de lakens uitdeelt. Zo weet je meteen welke studierichting of job jou best ligt. Want wat heb je te zoeken in de wiskunde, als de rechterhersenhelft bij jou de wet dicteert? En waarom zou je solliciteren voor een creatieve job, als de test de linkerkant van jouw brein als dominant bestempelt?

Niks dominant

Vooraleer je knopen doorhakt op basis van je testresultaat, kan het geen kwaad om de wetenschappelijke evidentie voor deze tweesplitsing onder de loep te nemen. Want wat blijkt? Neurowetenschappers vonden tot nog toe geen enkel bewijs voor een verband tussen persoonlijkheid en hersenhelftdominantie. Nochtans werden de grote middelen niet geschuwd: professor neuroradiologie Jeffrey Anderson en zijn team verbonden aan de Universiteit van Utah analyseerden breindata van maar liefst 1011 personen. Het meest opvallende resultaat van deze studie? Er was geen spoor te vinden van een meer en minder actieve hersenhelft; alle deelnemers gebruikten hun linker- en rechterbrein in gelijke mate.

Waar komt dit simplistische links-rechts-verhaaltje dan vandaan? Enerzijds zit het hokjesdenken ingebakken in de menselijke natuur. Anderzijds zijn sommige typisch menselijke functies inderdaad sterker geassocieerd met één bepaalde hersenhelft. Zo verwerken we taal vooral links, en sturen we onze aandacht grotendeels met de rechterhelft van ons brein.

Links én rechts

Los van de vraag of de ene hersenhelft de andere domineert, doet ook de opsplitsing in een creatieve rechter- en een analytische linkerhersenhelft de enorme complexiteit van ons brein oneer aan. Zo toonde een onderzoeksgroep van de Universiteit van Zuid-Californië onlangs aan dat we bij het zoeken naar creatieve oplossingen ook hard beroep doen op het linkerdeel van ons brein. En al in 1999 demonstreerden onderzoekers dat we wiskundige problemen vlotter oplossen wanneer beide hersenhelften samenwerken.

Het idee om persoonlijkheidstypes aan de twee hersenhelften te verbinden, is dus niet veel meer dan een hol marketingspraatje. Zelfhulphandboeken worden ermee volgeschreven, en de bedrijfswereld springt gretig mee op de kar: stimuleer het rechterdeel van je brein, en word creatiever! Ook op het internet schieten testjes gebaseerd op deze valse theorie blijkbaar als paddenstoelen uit de grond. Deze testen laten gelukkig meestal ook een derde uitkomst toe: ‘je gebruikt beide hersenhelften in gelijke mate’. Proficiat, heren testontwerpers, want dat is meteen ook de enige juiste uitkomst.

Auteur

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten

 

Seksisme in het brein.

Waarom de hersenen van mannen en vrouwen niet zo verschillend zijn als de wetenschap ons doet geloven.

‘Mannen komen van Mars, vrouwen van Venus’, luidt het cliché. Ze denken en handelen soms zo anders, dat ze wel van een andere planeet lijken te komen. Een groep wetenschappers verbonden aan de Universiteit van Pennsylvania kwam recent met een mogelijke verklaring op de proppen. In een grootschalig onderzoek lieten ze zien dat mannen en vrouwen een compleet ander patroon van hersenverbindingen vertonen. De onderzoekers publiceerden deze bevindingen in het toonaangevende vaktijdschrift Proceedings of the National Academy of Sciences. Het onderzoek werd door de media gretig opgepikt als ultieme bewijs voor enkele hardnekkige stereotypen: laat mannen vooral de kaart, en vrouwen eerder hun buikgevoel volgen. Kan men op basis van breinplaatjes wel dergelijke conclusies trekken? In dit artikel worden enkele bedenkingen op een rijtje gezet.

Mooie plaatjes

Diffusion tensor imaging (DTI) is een geavanceerde MRI-techniek die de structuur van zenuwbanen ontrafelt op basis van de beweging van watermoleculen in het brein. Het eindresultaat is een soort wegenkaart van hersenverbindingen, verpakt in fascinerende, kleurrijke plaatjes. Die plaatjes spreken overigens zo tot de verbeelding, dat ze zelfs op de albumcover van de populairste rockband van het moment prijken. Voor wetenschappers vormt DTI dan weer een rijke bron aan informatie: de techniek laat zien op welke manier hersendelen verbonden zijn en met elkaar kunnen communiceren.

In een recente studie (hier te vinden)  werd deze techniek op zeer grote schaal toegepast: maar liefst 949 vrijwilligers tussen 8 en 22 jaar, onder wie 521 vrouwen, lieten hun hersenen scannen. Toen de onderzoekers de hersenkaarten van mannen en vrouwen vergeleken, stelden ze enkele opmerkelijke verschillen vast. Bij mannen bleken er meer verbindingen binnen de hersenhelften te lopen dan bij vrouwen, terwijl bij vrouwen meer verbindingen tussen de beide hersenhelften liepen dan bij mannen. Voor het cerebellum, ook wel de kleine hersenen genoemd, bleek het plaatje dan weer gespiegeld: mannen hadden daar meer verbindingen lopen tussen de hersenhelften. Deze kleine hersenen sturen en coördineren bewegingen en spelen een belangrijke rol bij het aanleren van nieuwe motorische vaardigheden. Door de grote steekproef vrijwilligers in leeftijdscategorieën op te delen, konden de onderzoekers ten slotte ook aantonen dat deze verschillen rond de leeftijd van 13 jaar tot uiting komen.

Hersenverbindingen bij mannen (boven) en vrouwen (onder). (Ragini Verma, PNAS)

De onderzoekers lezen in deze structurele verschillen de verklaring waarom vrouwen uitblinken in bepaalde taken, terwijl mannen dan weer excelleren in andere taken. Een mannelijk brein vergemakkelijkt de coördinatie van bewegingen en vergroot de ruimtelijke vaardigheden, terwijl een vrouwelijk brein een beter evenwicht vindt tussen intuïtie en logisch denken. Volgens de auteurs sluiten hun bevindingen aldus opvallend goed aan bij enkele stereotiepe geslachtsverschillen: mannen kloppen vrouwen in kaartlezen en parkeren vlotter de auto, terwijl vrouwen dan weer schitteren in emotionele intelligentie, en gesprekken en gezichten beter zullen onthouden. Bovendien suggereren de onderzoekers dat deze verschillen verankerd liggen in het DNA, en dus niet aangeleerd zijn.

Enkele kanttekeningen

Het lijkt er evenwel op dat de onderzoekers, en in hun zog ook de populaire media, de bewijskracht en implicaties van deze resultaten sterk hebben overdreven. Ten eerste dreigt men de werkelijke grootte van de gevonden verschillen wat uit het oog te verliezen. De auteurs schermen met significante resultaten, maar laten na om ook effect sizes, een statistische maat voor de sterkte van het verschil, te rapporteren. Andere alerte onderzoekers voerden deze berekeningen wel uit. Die laten toe om de bevindingen meer in perspectief te plaatsen: indien louter op basis van de gemeten hersenverbindingen het geslacht zou worden voorspeld, ligt het percentage correcte classificaties maar net boven kansniveau (56%). De verschillen in hersenbedrading tussen de geslachten lijken aldus niet zo sterk uitgesproken te zijn. Het is dan ook geweten dat hoe groter de steekproef wordt, hoe sterker de kans toeneemt om een statistisch significant verschil te observeren. Dit wordt extra in de verf gezet door het uitblijven van geslachtsverschillen in een erg gelijkaardige studie, waarin ‘slechts’ 439 proefpersonen werden gescand.

Ten tweede hielden de onderzoekers in hun analyses geen rekening met de verschillen in hersenvolume, die mogelijk de gevonden resultaten kunnen helpen verklaren. De hersenen van een man zijn namelijk gemiddeld iets groter dan die van een vrouw. Om fysische redenen, die niet direct met sekseverschillen te maken hebben, moeten zenuwbanen in kleine en grote hersenen andere verbindingsroutes kiezen. In grote hersenen dienen immers grotere afstanden te worden afgelegd, waardoor het brein op zoek gaat naar een minder energieverslindende oplossing. De onderzoekers hadden voor deze alternatieve verklaring kunnen controleren door hersenvolume mee in de statistische berekeningen op te nemen.

Een derde kanttekening kan geplaatst worden bij de uitspraak van de auteurs dat de gevonden hersenverschillen hardwired zijn, en dus van bij de geboorte in het brein verankerd liggen. Intussen is echter algemeen bekend dat de hersenen een leven lang blijven evolueren en dat hersenverbindingen zich voortdurend aan externe invloeden aanpassen. Zo werd bijvoorbeeld gevonden dat het brein van muzikanten er compleet anders uitziet dan dat van niet-muzikanten. Opvoeding, hobby’s, en studiekeuze zijn maar enkele voorbeelden van invloeden die voor mannen en vrouwen duidelijk sterk uiteenlopen. Deze belangrijke contextuele factoren worden door de onderzoekers echter volledig over het hoofd gezien.

Ten slotte kan men zich vooral vragen stellen over de link die de auteurs leggen tussen de verschillen op hersenniveau enerzijds, en enkele stereotiepe geslachtsverschillen in denken en handelen anderzijds. De auteurs verwijzen naar een nog grootser opgezette gedragsstudie, waarin de scores van 3500 mannen en vrouwen op vlak van werkgeheugen, aandacht, en sociale cognitie werden vergeleken. Kritiek op dit onderzoek bleef evenmin uit: opnieuw bleken effect sizes van de gevonden verschillen in het algemeen triviaal klein. Ook wat persoonlijkheid betreft, valt het met geslachtsverschillen trouwens allemaal nog best mee. Begin dit jaar publiceerde een andere groep wetenschappers een onderzoek waarin meer dan 13000 personen op 120 karaktereigenschappen werden getest. De conclusie van de onderzoekers was duidelijk: de gelijkenissen tussen mannen en vrouwen zijn veel meer uitgesproken dan hun verschillen.

Conclusie

Op technisch vlak is deze studie, waarin de bedrading van mannelijke en vrouwelijke hersenen erg mooi in kaart werd gebracht, zeker een hoogstandje. De manier waarop de onderzoekers, en later ook de media, de resultaten ervan misbruikt hebben ter ondersteuning van voorbijgestreefde geslachtsstereotypen, is daarentegen van een veel bedenkelijker niveau. Voorlopig kan nog veilig besloten worden dat mannen gewoon van Aarde komen, en vrouwen ook.

Auteurs

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten.

Jelle Demanet is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de Ugent en is gefascineerd door alles wat met de hersenonderzoek te maken heeft. Door middel van fMRI tracht hij de hersenmechanismen verantwoordelijk voor intentionele en cognitieve controle in kaart te brengen. Op twitter kan je hem volgen als @jeldeman.