Browse Tag: hersenonderzoek

Ons digitaal geheugen. Maakt Google ons echt dommer?

Of ik nog weet wanneer de eerste mens op de maan landde. Dat googelen we even vlug. Maken we het onszelf en ons geheugen te gemakkelijk? Paradoxaal genoeg niet. Hoe meer we informatie opslaan op externe schijven hoe beter we informatie kunnen vasthouden in ons eigen geheugen. Dit blijkt uit een artikel dat onlangs verscheen in het toonaangevende tijdschrift Psychological Science. Een duo jonge wetenschappers verdiepte zich in het baten en schaden van ons geheugen door technologie. Een vooruitgang waar we elke dag mee geconfronteerd worden, en, toch niet te ontkennen, die ons af en toe een helpend handje biedt (1961!). Hoe kan dit ons niet interesseren? Laat ons de bevindingen even kort toelichten.

“[I do not] carry such information in my mind, since it is readily available in books… The value of a college education is not the learning of many facts but the training of the mind to think.” Einstein when answering the question “What is the speed of sound?” – Isaacson, 2007, p 229

Beter één boek in de hand of tien ipads in de lucht?

De auteurs baseerden zich op eerdere bevindingen dat het herinneren van informatie moeizamer verloopt als dit via digitale bronnen wordt geleerd. Anders gezegd, er zijn kosten verbonden aan de technologie. Maar om het vanuit een evolutionair oogpunt te bekijken: elke kost heeft ook een adaptieve functie. Vermoedelijk, aldus de onderzoekers, wordt door het opslaan van digitale informatie plaats gemaakt voor  het onthouden van andere nieuwe informatie (men spreekt van “cognitieve hulpbronnen”). Op deze manier vermijden we dat teveel informatie onnodig verstrengeld geraakt met nieuwe informatie en dus het opslaan van de nieuwe informatie bemoeilijkt. Men spreekt hier van proactieve interferentie, een woord dat niet goed in de mond valt dus.  Om deze mogelijkheid te onderzoeken, werden een paar eenvoudige opdrachten voorgeschoteld aan een groep studenten van de universiteit van Californië waarbij twee verschillende woordenlijsten, in pdf formaat, vanbuiten geleerd moesten worden. Dit zou later getest worden. Soms kregen de studenten echter te horen dat de eerste woordenlijst gedurende het ganse experiment beschikbaar bleef op de harde schijf van de computer.

To save or not to save?

In een eerste experiment werd gekeken naar het effect van het al dan niet digitaal opslaan van een lijst met pas geleerde woorden op het leren van nieuwe woorden erna. Alle studenten kregen te horen dat ze zesmaal twee woordenlijsten in PDF formaat zouden leren, waarbij ze ofwel de eerste lijst mochten opslaan op de computer voor latere her-studie, of niet. De laatste woordenlijst zou eerst getest worden. De eerste woordenlijst werd pas op het laatst getest. Dit “proces” werd zesmaal doorlopen. Of ze de eerste lijst al dan niet mochten opslaan op de computer, vernomen ze pas na het leren ervan. Zoals verwacht waren de studenten veel beter in het onthouden van de woorden uit de tweede lijst als ze de eerste lijst opgeslagen hadden op de computer dan als ze het niet hadden opgeslagen. To save dus.

To believe or not to believe?

In een tweede experiment, waren de onderzoekers geïnteresseerd of het belangrijk is dat de studenten geloven dat de eerste lijst beschikbaar blijft. Hiervoor werd een groep nieuwe studenten onder de loep genomen. Het experiment was nagenoeg hetzelfde als het voorgaande, met het enige cruciale verschil dat de studenten ofwel vernomen dat ze voor een betrouwbare computer zaten, ofwel voor een onbetrouwbare computer. Het opslaan van de woordenlijst was dus niet gegarandeerd. En inderdaad, het effect in het vorige experiment verdween met de noorderzon. To believe dus.

To interfere or not to interfere?

In een laatste experiment werd onderzocht of het effect van opslaan van digitale informatie afhangt van het gehalte waarmee het zou kunnen interfereren met nieuwe informatie. Dit werd onderzocht door voorgaande experiment opnieuw af te nemen aan een groep studenten maar deze keer bevatte de eerste lijst slechts 2 woorden (in plaats van 8 woorden). Een lijst van twee woorden is makkelijker te leren dan een lijst van acht woorden. Het risico op interferentie is dus klein, en opslaan op een externe schijf zou dus niet veel mogen uitmaken. En inderdaad, het effect verdween. To interfere dus.

Conclusie

Dit recent onderzoek toont aan dat het gemakkelijker is om nieuwe kennis in ons geheugen op te slaan als we voorgaande kennis digitaal opslaan. In ons dagelijks leven, wordt meer en meer informatie digitaal opgeslagen en komt dus meer en meer informatie alom beschikbaar. Dit komt ons geheugen, paradoxaal genoeg, ten goede. Er komen immers meer “hulpbronnen” vrij om nieuwe kennis op te doen.

Er zijn echter wel twee voorwaarden aan verbonden: We moeten er op kunnen rekenen dat de digitalisering betrouwbaar verloopt en dat er een risico is op vermenging met nieuwe kennis. Een eerste stap naar een vergoelijking van een almaar meer digitaliserende maatschappij is gemaakt. Het is bijlange niet zo slecht voor de menselijke cognitie als gevreesd was. Om het in Sherlock Holmes’ woorden samen te vatten “a man should keep his little brain-attic stocked with all the furniture that he is likely to use, and the rest he can put away in the lumber-room of his library, where he can get it if he wants it” (p. 488 ; The five Orange Pips). Mijn boodschap? Laat die smartphone voorlopig nog maar in je broekzak steken.

Referentie

  • Storm, B.C. and Stone, S.M. (2014). Saving-Enhanced Memory: The benefits of saving on th elearning and remembering of new information. Psychological Science, 26(2), p. 182-188.

Auteur

Eleonore Smalle is doctoraatsonderzoekster in de cognitieve psychologie. Ze is verbonden aan het Instituut voor Psychologisch Wetenschappelijk Onderzoek (IPSY) en het Instituut voor Neurowetenschap (IoNS) van de Université Catholique de Louvain (Louvain-la-Neuve). Daar bestudeert ze geheugenmechanismen aan de basis van taalverwerving. Aan de Universiteit van Oxford deed ze tevens onderzoek naar invloeden van de motorische cortex op spraakperceptie, door middel van Transcraniale Magnetische Stimulatie van het brein.

 

Mickey Mouse in de maak? Muizen worden slimmer door menselijke hersencellen.

Wat gebeurt er als je menselijke hersencellen in een dierenbrein injecteert? De vraag lijkt weggelopen uit een oude sciencefictionprent. Of, recenter, Rise of the Planet of the Apes, waarin wetenschappers in hun zoektocht naar een geneesmiddel voor Alzheimer apen intelligenter maken, tot die in opstand komen en zich tegen de mensen keren. Dezelfde vraag lijkt tevens de insteek van een artikel dat onlangs in het toonaangevende vaktijdschrift Journal of Neuroscience verscheen. Een team wetenschappers slaagde er namelijk in om muizen te kweken wiens hersenen deels menselijk waren. Deze ‘getunede’ muizen bleken dan ook nog eens slimmer te zijn dan hun soortgenoten die louter beroep deden op hun muizenbrein. In dit artikel worden deze bevindingen verder toegelicht.

Sterren in het brein

 Om de muizenhersenen menselijker te maken, namen de onderzoekers hun toevlucht tot zogenaamde gliacellen. Ook al nemen deze cellen minstens de helft van ons brein in beslag, toch werden ze door hersenwetenschappers jarenlang grotendeels over het hoofd gezien. In tegenstelling tot hun bekendere broertjes, de neuronen of hersencellen, kunnen gliacellen immers niet communiceren via elektrische signalen. Recent steeg de wetenschappelijke belangstelling, toen bleek dat een stervormig type gliacel, de astrocyten, over een eigen vorm van chemische communicatie beschikt. Wetenschappers vermoeden dat dit type cellen de neuronen ondersteunt en de informatiestroom in onze hersenen in goede banen leidt. Er gaan zelfs stemmen op dat deze cellen verantwoordelijk kunnen zijn voor ons bewustzijn. Bovendien zijn menselijke astrocyten, veel meer dan neuronen, mee geëvolueerd: in vergelijking met muizen, is de menselijke astrocyt opmerkelijk groter, met veel meer vertakkingen. Misschien, dacht neurowetenschapper Steven Goldmann, spelen deze astrocyten dan wel een belangrijke rol in wat ons als soort intelligenter maakt?

Slimme muizen

Onder leiding van Goldmann, nam een team onderzoekers de proef op de som door onvolgroeide menselijke gliacellen in het brein van pasgeboren muizen te brengen. De cellen groeiden en verspreidden zich snel doorheen het muizenbrein, waar ze de oorspronkelijke gliacellen verdrongen. Bovendien werden ze perfect geïntegreerd in het netwerk van muizenneuronen. Omdat de menselijke astrocyten een stuk groter zijn en meer vertakkingen hebben, voorspelden de onderzoekers dat het muizenbrein efficiënter zou gaan werken. Een grote testbatterij kon dit alvast bevestigen: zo vonden deze muizen bijvoorbeeld sneller hun weg doorheen een doolhof, en maakten ze een pak minder fouten. De gliacellen leken aldus het leren te verbeteren en het geheugen aan te scherpen.

Nieuwe behandelingen

Het doel van dit onderzoek, zo beweert Goldmann, is niet zozeer om muizen slimmer te maken, maar eerder om tot een beter begrip en mogelijk een nieuwe behandeling voor enkele hersenaandoeningen te kunnen komen. De werking en groei van gliacellen valt in deze muizen immers veel makkelijker te bestuderen dan in een petrischaaltje. Zo hoopt Goldmann bijvoorbeeld dat de muizen helpen om schizofrenie beter te begrijpen. Daarnaast ziet hij een toepassing in de behandeling van multiple sclerose. Deze neurologische aandoening wordt gekenmerkt door de aantasting van de myelineschede rond hersencellen. Dit eiwit isoleert de neuronen en garandeert een goede impulsgeleiding. Goldmann injecteerde onvolgroeide menselijke gliacellen in muizenjongen met een tekort aan myeline. Deze groeiden uit tot cellen die specifiek instaan voor het aanmaken van myeline, alsof ze het tekort detecteerden en ervoor compenseerden. Goldmann hoopt in de toekomst MS-patiënten met gliacellen te kunnen behandelen.

Ethische vragen

Desalniettemin roept deze studie duidelijk enkele ethische vragen op. Is het verantwoord om andere diersoorten als proefkonijn te gebruiken om onze hersenen beter te kunnen begrijpen? En maken we, door muizenhersenen meer menselijk te maken, muizen niet enkel slimmer, maar ook menselijker? Goldmann lijkt dit laatste alvast niet te onderschrijven. Hij benadrukt dat de proefdieren nog steeds over een muizenbrein, en geen mensenbrein, beschikken: de hersencellen blijven die van de muis. De menselijke cellen maken dit netwerk efficiënter, maar geven de muizen geen nieuwe vaardigheden die we als typisch menselijk zouden beschouwen. Toch kan je je de vraag stellen waar dan de grens van het ethisch aanvaardbare ligt. Wat als dieren door gelijkaardige interventies een hogere en dus meer menselijke vorm van bewustzijn beginnen te ontwikkelen? Goldmann blies alvast een soortgelijk onderzoek bij apen af wegens ethische bezwaren.

Besluit

Dat menselijke cellen in een muizenbrein kunnen worden opgenomen en groeien, is in wetenschappelijk opzicht opzienbarend.

Deze studie biedt perspectief om mensen met een hersenaandoening in de toekomst beter te behandelen. Maar bovenal toont dit onderzoek de nood aan van een maatschappelijk debat over wat al dan niet ethisch door de beugel kan.

Auteurs

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten.

Jelle Demanet is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de Ugent en is gefascineerd door alles wat met de hersenonderzoek te maken heeft. Door middel van fMRI tracht hij de hersenmechanismen verantwoordelijk voor intentionele en cognitieve controle in kaart te brengen. Op twitter kan je hem volgen als @jeldeman.

 

Op zoek naar tekenen van bewustzijn.

Even vlug testen of je bij bewustzijn bent? Stel jezelf de vraag wie en waar je bent, en wat er om je heen gebeurt. Zo simpel is het. Voor wetenschappers blijft het bewustzijn echter niet zo makkelijk vast te pinnen. Ook in de klinische praktijk is het vaak moeilijker na te gaan. Want hoe meet je bewustzijn bij patiënten die niet meer kunnen spreken, en niet langer op prikkels lijken te reageren? Met behulp van geavanceerde beeldvormingstechnieken slagen hersenonderzoekers er steeds beter in om bewustzijn in het brein te herkennen, en de onderliggende netwerken in kaart te brengen. Door hersensignalen te decoderen, kunnen wetenschappers tegenwoordig ook de antwoorden op simpele ja/neen-vragen, de herkenning van bekende gezichten of de ervaren suspense tijdens een thriller rechtstreeks uit het brein aflezen. Deze wetenschappelijke doorbraken helpen ons niet alleen het mysterie van het bewustzijn te ontrafelen, maar zijn ook hoopgevend om sporen van bewustzijn te detecteren bij patiënten in een vegetatieve toestand. Een aantal van deze patiënten lijken immers wel degelijk bewust te zijn, ook al geven ze schijnbaar geen teken van leven meer.

Bewustzijn in het brein

Vermaard Belgisch neuroloog Steven Laureys doet al enkele jaren grensverleggend onderzoek naar minimaal bewustzijn in vegetatieve patiënten. Hij pleit voor de toepassing van hersenscans in de klinische praktijk, als aanvulling op de bestaande gedragstesten die de mate van bewustzijn in patiënten trachten vast te stellen. Laureys vond namelijk dat een aantal vegetatieve patiënten wel degelijk tekenen van bewustzijn vertonen op de hersenscans, ook al slagen deze patiënten er niet in om hun gedachten met de buitenwereld te delen. Door de scans van de patiënten te vergelijken met die van een gezonde controlegroep, kwam het achterste deel van de pariëtale hersenschors naar voor als een belangrijk bewustzijnscentrum. In rusttoestand toont dit hersengebied normaliter de meeste activiteit. Bij vegetatieve patiënten ziet men in dit gebied het minste energieverbruik. Sommige patiënten vertonen echter wel nog enige activiteit ter hoogte van dit bewustzijnscentrum. Bij hen is er sprake van een minimaal bewustzijn. Maar hoe kan men communiceren met iemand die geen teken van leven meer lijkt te geven?

Ja of neen

De uitdaging bestaat erin om gedachten rechtstreeks uit het brein af te lezen. En dat lukt hersenwetenschappers tegenwoordig al redelijk goed. In een recente studie met gezonde proefpersonen konden de onderzoekers alvast een goed rapport voorleggen: ze slaagden erin de antwoorden op simpele ja/neen-vragen uit de hersensignalen te ontcijferen met een precisie van ongeveer 90%. Daartoe legden ze de proefpersonen in de scanner enkele vragen voor (bv., ‘Ben je getrouwd?’) en vroegen hen daarna selectief hun aandacht richten op het juiste antwoord (‘ja’ of ‘neen’). Ook bij patiënten werd al een gelijkaardige, zij het iets meer omslachtige methode toegepast. De onderzoekers trainden de patiënten om zich voor te stellen dat ze ofwel aan het tennissen, ofwel door hun huis aan het wandelen waren. Opnieuw werden enkele eenvoudige vragen gesteld. Door of aan tennis (‘ja’), of aan hun wandeltocht door het huis (‘neen’) te denken, probeerden de patiënten te antwoorden. Enkelen onder hen slaagden daar effectief in. In een onlangs verschenen studie werd met behulp van elektroden de elektrische activiteit van de hersenen bij deze minimaal bewuste patiënten in kaart gebracht. De onderzoekers toonden dat de rijke hersenverbindingen en netwerken die bij gezonde proefpersonen in bewuste toestand teruggevonden worden ook bij deze patiënten grotendeels intact zijn. Onderstaande figuur geeft dit bewustzijnsnetwerk weer bij een vegetatieve patiënt (links), een minimaal bewuste patiënt (midden) en een gezonde controlepersoon (rechts). Deze techniek is een veelbelovend alternatief voor de complexere, duurdere en tijdrovende hersenscans.

Hitchcock in de scanner

Patiënten in een vegetatieve toestand lijken niet langer in staat connectie te maken met de buitenwereld. Ze herkennen de familie naast hun bed niet meer, en geven geen blijk van emoties. Recent onderzoek geeft echter aan dat bij een aantal van die patiënten het brein wel hevig reageert op deze prikkels. Zo toonden onderzoekers dat het hersengebied dat specifiek oplicht bij het zien van gezichten, ook actief werd wanneer de patiënten foto’s te zien kregen. Waren dat foto’s van vrienden of familie van de patiënt, merkten de onderzoekers op dat ook andere hersengebieden oplichtten die gelinkt zijn aan het autobiografische geheugen. Deze bevindingen suggereren dat sommige vegetatieve patiënten wel degelijk de mensen in hun nabije omgeving herkennen. Andere onderzoekers gingen nog een stap verder, en vergeleken hoe de hersenen van een vegetatieve patiënt en van een gezonde proefpersoon reageren op een kortfilm van Alfred Hitchcock, de meester van de suspense. Ze vonden dat de patronen in de hersenactiviteit van de patiënt heel gelijkaardig waren aan die van de gezonde proefpersoon. Het brein van de patiënt leek even hard mee te leven met het hoofdpersonage tijdens de spannende scènes. De onderzoekers concludeerden dat dit niet enkel aantoont dat de patiënt nog bij bewustzijn is, maar ook dat hij de film begrepen had. Deze bevindingen werden onlangs gepubliceerd in het toonaangevende tijdschrift Proceedings of the National Academy of Sciences.

Besluit

De opmars van geavanceerde beeldvormingstechnieken stelt wetenschappers steeds meer in staat om het ogenschijnlijk ongrijpbare bewustzijn in kaart te brengen. Daarnaast zijn hersenscans van goudwaarde voor clinici om tekenen van bewustzijn op te sporen bij patiënten die door breinschade niet langer lijken te reageren op hun omgeving. Tezelfdertijd slagen onderzoekers er beter en beter in om gedachten en gevoelens rechtstreeks uit hersensignalen af te leiden. Deze ontwikkelingen helpen patiënten bij wie vroeger geen enkele communicatie mogelijk bleek, terug een stem te geven. Hierdoor groeit de hoop deze patiënten in de toekomst een betere zorg en behandeling aan te bieden.

Auteur

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten.

 

Over vrije wil en andere illusies.

Wij  zijn voor een groot deel gedetermineerd door elementen die we niet zelf in handen hebben. Zo blijkt bijvoorbeeld dat hormonen die we ontvingen in de baarmoeder onze seksuele voorkeur mee bepalen en dat genen onze alcoholconsumptie beïnvloeden. Anderzijds blijkt ook onze omgeving een grote invloed te hebben, voornamelijk in onze kindertijd. Zo hebben mensen die in een omgeving opgegroeid zijn waar de lucht sterk vervuild is, gemiddeld een lager IQ.

Ook impulsbeheersing en wilskracht worden door al deze factoren bepaald. Daarom kunnen we ons afvragen of we wel zelf verantwoordelijk zijn voor onze beslissingen en daden.

De scanner weet meer dan jij…

In een experiment wilden Soon en collega’s nagaan of onze beslissingen al vastliggen nog voor we ons daar bewust van zijn. In hun studie werden mensen getest in een fMRI-scanner. Dit is een hersenscanner die meet welke delen in de hersenen het meest zuurstofrijk bloed verbruiken. Daaruit wordt dan afgeleid welke hersengebieden het meest actief zijn bij een bepaalde taak. Aan de deelnemers die in de scanner lagen, werd gevraagd om op één van twee knoppen te drukken. Ze mochten zelf kiezen wanneer ze drukten en op welke knop ze drukten. Op basis van hun hersenactiviteit konden de onderzoekers meer dan zeven (!) seconden voor dat de deelnemers dachten “nu ga ik op de knop drukken”, reeds boven kansniveau voorspellen op welke knop ze zouden drukken.

Deze resultaten suggereren dat onze hersenen al besloten hebben op welke knop we zullen drukken nog vóór we ons bewust zijn van deze beslissing. Daardoor werd het oeroude debat over het al dan niet bestaan van vrije wil weer aangewakkerd. Velen stellen zich de vraag of ons bewustzijn de oorzaak is van ons gedrag of dat ons gedrag wordt geregeld door het onbewuste en het bewuste slechts een illusie is die achteraf wordt gecreëerd. Ongeveer 200 jaar geleden stelde de filosoof Schopenhauer al dat vrije wil een illusie is. En ook nu zijn er steeds meer auteurs die beweren dat (de beste) beslissingen genomen worden door ons onbewuste.

… maar die scanner meet (gelukkig) niet perfect

De resultaten van dit experiment moeten echter –zoals altijd in de wetenschap– genuanceerd worden. Op basis van de fMRI-data konden slechts 60% van de beslissingen correct voorspeld worden. Hoewel dit beter is dan kansniveau, kunnen we ons de vraag stellen waarom de beslissingen niet met 100% zekerheid voorspeld kunnen worden. Dit is ten minste voor een deel te wijten aan de kwaliteit van de scanners. Omdat met een fMRI scanner geen hersenactiviteit, maar een indirecte maat (nl. het percentage zuurstofrijk bloed) gemeten wordt, is het onmogelijk om een perfecte voorspelling te maken. De cruciale vraag is dus of men met een perfecte meetmethode beslissingen wel met volledige zekerheid zou kunnen voorspellen?

Wat denken de auteurs hier zelf van?

Eén van de auteurs, Prof. John-Dylan Haynes vermeldde in een debat dat hij gelooft dat onze daden volledig gedetermineerd zijn door onze vroegere ervaringen. Volgens hem zou een perfecte machine in theorie dus ons beslissingsgedrag foutloos kunnen voorspellen. Een perfecte voorspelling op langere termijn zal volgens hem echter moeilijk blijven omdat we steeds dingen kunnen meemaken die ons hersenpatroon – en dus ook onze beslissingen – veranderen. Een andere auteur van deze studie, Prof. Marcel Brass, gelooft ook dat onze beslissingen voor een deel gestuurd worden door onze ervaringen. In tegenstelling tot Haynes gelooft hij echter niet dat ons gedrag ooit perfect voorspeld zal kunnen worden op basis van hersenactiviteit voorafgaand aan onze bewuste beslissing. Volgens hem blijft er een rol weggelegd voor het bewuste waardoor we onze beslissingen bijvoorbeeld altijd nog op het laatste moment kunnen aanpassen. Voorlopig zijn dit allemaal nog slechts meningen, maar de wetenschap lijkt steeds meer in staat om ingenieuze proefopstellingen te ontwikkelen om deze vraag verder te onderzoeken. Benieuwd in welke richting dit ons zal leiden!

(De illusie van) vrije wil is belangrijk

Maakt het nu eigenlijk iets uit in ons dagelijkse leven of we geloven in de vrije wil? Tangney en collega’s toonden aan van wel. Hoe meer we geloven in vrije wil, hoe meer we bereiken in het leven en hoe minder zelfdestructief gedrag we zullen vertonen. Volgens de onderzoekers komt dit doordat mensen die geloven in vrije wil meer zelfcontrole uitoefenen. Daarnaast deden Vohs en collega’s een experiment waarin ze het geloof in de vrije wil manipuleerden. De deelnemers kregen een aantal stellingen te lezen. De ene helft las zinnen over het bestaan van de vrije wil, terwijl de andere helft te lezen kreeg dat vrije wil niet bestaat. Daarna moesten de deelnemers een cognitieve test afleggen. Plots vertelde de proefleider hen dat hij dringend weg moest, maar dat ze zichzelf één euro per goed antwoord mochten uitbetalen na afloop van het experiment. De deelnemers die gelezen hadden dat vrije wil niet bestaat, namen (onterecht) veel méér geld dan de anderen. Mensen die geloven dat de vrije wil niet bestaat lijken zich dus asocialer te gedragen.

Vrije wil is dus zoals de voetgangersknop aan een verkeerslicht. Als je gelooft dat het licht sneller op groen gaat springen door op die knop te drukken, ga je daarna gelukkiger het zebrapad oversteken.

Als je gelooft dat je controle kan uitoefenen op je beslissingen, ga je meer bereiken in het leven. Dus los van de vraag of vrije wil een illusie is, is het voor ons persoonlijk welzijn belangrijk dat we in de vrije wil blijven geloven!

Referenties

  • Soon, C.S., Brass, M., Heinze, H.J., & Haynes, J.D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience 11, 543 – 545.
  • Tangney, J.P., Baumeister, R.F., & Boone, A.L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271 – 324.
  • Vohs, K.D., & Schooler, J.W. (2008). The value of believing in free will: Encouraging a belief in determinism increases cheating. Psychological Science, 19, 49 – 54.

Deze blogpost verscheen eerder op Studio Brein, een initiatief van Breinwijzer vzw.

Auteur: Sarah Beurms

Sarah Beurms is doctoraatsstudente in de Leerpsychologie aan de KUL.

 

Dominante hersenhelft: de mythe doorprikt.

“Weten welke hersenhelft dominant is, kan wonderen doen voor je studies en/of je carrière”, beweerde hln.be recent. Want net zoals het gaat bij schrijven of voetballen, heb je bij het oplossen van problemen een voorkeur voor links of rechts. Klinkt logisch, toch?

Links versus rechts

Wie liefst elk probleem nauwgezet analyseert, zich graag verliest in de details, en daarbij telkens de ratio boven alles stelt, laat zich vooral leiden door de linkerhersenhelft. Wie daarentegen vooral vertrouwt op het buikgevoel en een creatieve oplossing verkiest, rekent vooral op de rechterzijde van het brein. Een eenvoudige tweedeling dringt zich op: de pragmatische analyticus versus de creatieve chaoot.

En het wordt nog mooier: aan de hand van een korte test vis je eenvoudigweg uit welk hersendeel bij jou de lakens uitdeelt. Zo weet je meteen welke studierichting of job jou best ligt. Want wat heb je te zoeken in de wiskunde, als de rechterhersenhelft bij jou de wet dicteert? En waarom zou je solliciteren voor een creatieve job, als de test de linkerkant van jouw brein als dominant bestempelt?

Niks dominant

Vooraleer je knopen doorhakt op basis van je testresultaat, kan het geen kwaad om de wetenschappelijke evidentie voor deze tweesplitsing onder de loep te nemen. Want wat blijkt? Neurowetenschappers vonden tot nog toe geen enkel bewijs voor een verband tussen persoonlijkheid en hersenhelftdominantie. Nochtans werden de grote middelen niet geschuwd: professor neuroradiologie Jeffrey Anderson en zijn team verbonden aan de Universiteit van Utah analyseerden breindata van maar liefst 1011 personen. Het meest opvallende resultaat van deze studie? Er was geen spoor te vinden van een meer en minder actieve hersenhelft; alle deelnemers gebruikten hun linker- en rechterbrein in gelijke mate.

Waar komt dit simplistische links-rechts-verhaaltje dan vandaan? Enerzijds zit het hokjesdenken ingebakken in de menselijke natuur. Anderzijds zijn sommige typisch menselijke functies inderdaad sterker geassocieerd met één bepaalde hersenhelft. Zo verwerken we taal vooral links, en sturen we onze aandacht grotendeels met de rechterhelft van ons brein.

Links én rechts

Los van de vraag of de ene hersenhelft de andere domineert, doet ook de opsplitsing in een creatieve rechter- en een analytische linkerhersenhelft de enorme complexiteit van ons brein oneer aan. Zo toonde een onderzoeksgroep van de Universiteit van Zuid-Californië onlangs aan dat we bij het zoeken naar creatieve oplossingen ook hard beroep doen op het linkerdeel van ons brein. En al in 1999 demonstreerden onderzoekers dat we wiskundige problemen vlotter oplossen wanneer beide hersenhelften samenwerken.

Het idee om persoonlijkheidstypes aan de twee hersenhelften te verbinden, is dus niet veel meer dan een hol marketingspraatje. Zelfhulphandboeken worden ermee volgeschreven, en de bedrijfswereld springt gretig mee op de kar: stimuleer het rechterdeel van je brein, en word creatiever! Ook op het internet schieten testjes gebaseerd op deze valse theorie blijkbaar als paddenstoelen uit de grond. Deze testen laten gelukkig meestal ook een derde uitkomst toe: ‘je gebruikt beide hersenhelften in gelijke mate’. Proficiat, heren testontwerpers, want dat is meteen ook de enige juiste uitkomst.

Auteur

Wout Duthoo is postdoctoraal onderzoeker aan de vakgroep Experimentele Psychologie van de UGent. Hij onderzoekt hoe mensen optimaal hun aandacht weten te verdelen en sturen. Daarnaast probeert hij aan de hand van de EEG-methode de onderliggende hersenmechanismen beter te begrijpen. Ten slotte is hij ook geïnteresseerd in (afwijkende) aandachtsprocessen in neurologische patiënten

 

Psychoanalyse: van de zetel naar de scanner

Ruim een eeuw nadat Sigmund Freud de psychoanalyse als ‘spreekkuur’ uit de grond stampte, wordt vanuit Freuds oorspronkelijke discipline, namelijk de neurologie, vernieuwend onderzoek gedaan naar de effecten van psychoanalyse op onze hersenen. Recent verscheen immers een studie in het hoog gerankte Amerikaanse tijdschrift ‘PLoS ONE’. Deze onderzocht voor de allereerste keer het effect van langdurige psychodynamische therapie op de hersengebieden die voor depressieve patiënten betrokken zijn bij hun emotionele reacties op persoonlijk relevant materiaal.

Depressie gevisualiseerd in de hersenen

In de studie werden zestien chronisch depressieve patiënten onderzocht, die twee tot vier maal per week gedurende vijftien maanden deelnamen aan een psychodynamische psychotherapie. Bij wijze van controle werden deze patiënten vergeleken met niet-depressieve personen die qua leeftijd, geslacht en opleiding met hen overeenstemden.

In de lijn met voorgaand onderzoek toonde deze studie aan dat depressieve patiënten, in vergelijking met de controlegroep, intenser emotioneel reageerden op persoonlijk gevoelig materiaal. Bv. werd er bij een van de betrokken patiënten een afbeelding getoond met als bijschrift: “This child cries for love and the mother does not react”, een thema dat in een voorafgaand interview met deze patiënt een centrale rol innam. Deze ‘emotionele reactiviteit’ en het reguleren ervan wordt aangestuurd door verschillende hersenbanen, waarvan de activiteit via moderne beeldvormingstechnieken, zoals fMRI (functional Magnetic Resonance Imaging), gevisualiseerd kan worden. Veranderingen in activatieniveaus kunnen op die manier zichtbaar gemaakt worden.

Opmerkelijke neurobiologische veranderingen

In de studie werden de hersenscans van de betrokken depressieve patiënten, zowel bij aanvang als bij beëindiging van de psychodynamische psychotherapie, vergeleken met de scans van de controlepersonen. De resultaten wezen uit dat de aanvankelijk overgevoelige emotie- en regulatiecentra van de depressieve individuen na de behandeling beduidend minder prikkelbaar waren geworden. Daar waar de patiënten bij aanvang van de therapie nog intens emotioneel reageerden op gevoelig materiaal, was deze intensiteit aan het einde van de behandeling opmerkelijk gedaald. De vastgestelde neurobiologische veranderingen gingen hierbij zowel gepaard met een vermindering in depressiviteit als met een algemene symptoomverbetering. Bij de controlepersonen vond men deze trend echter niet terug.

Tenslotte: we zijn meer dan ons brein

Net zoals voor langdurige psychodynamische therapie, brachten fMRI-gebaseerde studies ook de effecten van kortdurende cognitieve gedragstherapie op de emotionele regulatie van depressieve patiënten in kaart. Alhoewel de waarde van dergelijk onderzoek niet onderschat mag worden, moeten we er ons van bewust zijn dat het slechts een deel van het plaatje kleurt en hersenonderzoek niet “de waarheid” uitbeeldt. Een recent nummer van ‘De Groene Amsterdammer’ waarschuwt voor “neurononsens” en “het simplisme van de breincultuur”. We zijn immers veel meer dan ons brein, luidt het, en problemen kunnen niet worden gereduceerd tot een kwestie van neuronen in ons hoofd. Kritische stemmen die pleiten voor een meer contextuele benadering klinken steeds luider. Wordt ongetwijfeld vervolgd.

Referenties

  • Buchheim, A., Viviani, R., Kesller, H., Kächele, H., Cierpka, M., Roth, G., George, C., Kernberg, O.F., Bruns, G., & Taubner, S. (2012). Changes in Prefrontal-Limbic Function in Major Depression after 15 Months of Long-Term Psychotherapy. PLoS ONE, 7 (3).

Auteur: Shana Cornelis

Shana Cornelis is klinisch psychologe en doctoreert aan de vakgroep Psychoanalyse en Raadplegingspsychologie van de UGent. Vanuit een fascinatie voor de link tussen psychische en biologische processen onderzoekt ze hoe het lichaam in het spreken van patiënten verschijnt gedurende het verloop van een psychodynamische therapie, en hoe door het spreken hierover ook de lichamelijke klachten zelf evolueren. Ter illustratie van de uitkomst van deze therapieën maakt ze onder andere gebruik van schommelingen in specifieke hormonen (waaronder cortisol, een stresshormoon) die in het speeksel van de patiënten gemeten werden.

 

Fascinerende hersenen: een beknopte geschiedenis van hersenonderzoek

Hoe is het mogelijk dat onze hersenen, pakweg anderhalve kilo biologische massa, in staat zijn een roman te schrijven, wolkenkrabbers te bouwen, vliegtuigen uit te vinden of relativiteitstheorieën te bedenken? Het onderzoeksveld dat de relatie tussen hersenen en gedrag bestudeert is vandaag in volle ontwikkeling. Hieronder vind je een beknopte geschiedenis over beeldvormend hersenonderzoek in de gedragswetenschappen.

Hoe het begon: hersenletsels onder de loep

Al eeuwen weten we dat een heleboel bewegings- en denkfuncties van mensen verband houden met de hersenen. Dit weten we omdat de (overlevende) slachtoffers van hoofdletsels met zulke bewegings- en denkproblemen werden geconfronteerd. Een bekend geval van hersenschade is Phineas Gage (zie tekening). Door een voortijdige explosie doorboorde een ijzeren staaf de frontale (voorste) hersenkwabben van deze Amerikaanse spoorwegarbeider. Phineas overleefde dit ongeluk, maar zijn gedrag bleek naderhand erg te zijn veranderd. Waar hij voordien een toegewijd werknemer en echtgenoot was, bleek hij na het ongeval prikkelbaar, wispelturig en ongemanierd.

Hersenonderzoek Phineas Gage

Vanuit de geneeskunde en later ook de klinische psychologie werd het gedrag bij patiënten met een hersenbeschadiging meer systematisch geobserveerd en geregistreerd. Dit was een grote vooruitgang in vergelijking met de oude anekdotische gevalsstudies. De systematische studie van patiënten met hersenbeschadiging bracht dus gaandeweg een beter beeld van de relatie tussen hersenen en gedrag.

Van hokjesdenken naar een meer holistische benadering

In de loop van de 20ste eeuw ontwikkelden de gedragsneurologie en neuropsychologie zich als nieuwe disciplines. Deze onderzoeksdisciplines stonden voor een meer wetenschappelijke benadering. Meer specifiek werd het hersenletsel op een zo correct mogelijke manier afgebakend en werd de gedragswijziging op een meer precieze manier beschreven. Het gevaar van een dergelijke aanpak is echter dat deze leidt tot ‘hokjesdenken’: een vereenvoudiging van de realiteit waarbij bepaalde hersengebieden worden ‘gereduceerd’ tot de oorsprong van bepaalde cognitieve functies.

Gaandeweg kwam tegen het hokjesdenken een tegenbeweging op gang waarbij een meer holistische benadering van de hersenwerking werd gehanteerd. Daarbij keek met vooral naar netwerken van hersenregio’s in plaats van specifieke gebieden in de hersenen.

Innovatie in beeldvormingstechnieken

De uitvinding en ontwikkeling van nieuwe beeldvormingstechnieken in de tweede helft van de jaren ’70 markeerden een nieuwe periode in de neurowetenschappen. Toch zou het nog tot het begin van de jaren ‘90 duren voor de eerste functionele beelden werden gemaakt.

fMRI

De impact van met name functionele magnetische resonantie (fMRi) op de ontwikkeling van de cognitieve neurowetenschappen kan moeilijk worden overschat. Voor het eerst werd het mogelijk om de reacties van het brein te bestuderen in een levend en wakker persoon tijdens het uitvoeren van (denk) taken, en dit zonder injecties, zonder medicatie, zonder pijn, zonder nadelige gevolgen.

Voor- en nadelen van fMRI

De voordelen van deze techniek zorgden er voor dat hersen-gedragsonderzoek ook in normale vrijwilligers mogelijk werd en dat trok veel gedragswetenschappers aan. Maar aan die populariteit kleefden ook een aantal nadelen.

  1. Het was niet altijd duidelijk wat op die mooie plaatjes nu juist te zien was en hoe je dat moest interpreteren. Veel onderzoek was (en is nog altijd) gebaseerd op een vergelijking van de hersenactivatie tijdens (subtiel) verschillende opdrachten. Maar wat is een goede controletaak als je bijvoorbeeld ‘rekenen’ wil onderzoeken? Rust, tellen, of cijfers lezen? Afhankelijk van welke controletaak je kiest zal je meer of minder activatie overhouden, en vanaf wanneer zijn die gebieden ook echt betrokken bij rekenen?
  2. Daarnaast heb je het probleem dat je nu wel netwerken van hersenregio’s kan visualiseren, maar dat je niet echt weet waarvoor elk van die regio’s dient, en of die verschillende hersengebieden überhaupt met elkaar verbonden zijn.

Opwekken van virtuele hersenschade

Maar ook hiervoor werden oplossingen bedacht. Zo werd het mogelijk om tegen de schedel van een gezonde vrijwilliger een klein maar sterk magnetisch veld op te wekken dat een tijdelijke verstoring van het hersenweefsel onder de magneet tot gevolg had. Wanneer zo’n bewerking toegepast wordt op de spraakregio van een vrijwilliger, resulteert dit in een korte spraakstoornis zonder blijvende gevolgen. De aldus opgewekte ‘virtuele hersenschade’ blijkt uitermate geschikt om te bepalen of een bepaalde regio van het hersennetwerk noodzakelijk is voor het uitvoeren van een bepaald gedrag. Causaliteit (voor meer uitleg over oorzakelijke verbanden, klik hier) kan ook worden bestudeerd door te onderzoeken wanneer de hersenen precies geactiveerd worden, maar dat is millisecondenwerk en dus veel te snel zelfs voor de hedendaagse scanners.

EEG en DTI

Elektrofysiologisch onderzoek (EEG) beschikt wel over een zeer behoorlijke meetsnelheid (in milliseconden). EEG laat beter toe de richting van de communicatie tussen hersengebieden te bestuderen. In combinatie met de goede spatiële resolutie van fMRI levert dit al een vrij behoorlijk plaatje op van het functionele netwerk.

Connectiviteit, de mate en manier waarop hersenschorsgebieden met elkaar verbonden zijn, kan inmiddels ook met een MR-scanner worden onderzocht. Deze techniek wordt diffusion tensor imaging, kortweg DTI, genoemd. Diffusie gewogen beeldvorming maakt gebruik van de beweging van watermoleculen in de zenuwvezels die neuronen met elkaar verbinden. De bewegingsvrijheid van deze watermoleculen is het grootst in de lengterichting van de vezels en door de maximale gradiënten te volgen krijgt men inzicht hoe de zenuwbundels van het ene naar het andere hersengebied lopen.

Een blik op de toekomst van hersenonderzoek

De meeste technieken (zoals fMRI en EEG) dateren van de laatste 30 jaar. Ze gaven en geven het hersenonderzoek in de gedragswetenschappen een enorme boost en het ziet er niet naar uit dat daar snel een einde aan zal komen. Meer en meer worden verschillende technieken met elkaar gecombineerd om preciezer geformuleerde onderzoeksvragen te onderzoeken. Nieuwe wiskundige technieken voor het bestuderen van netwerken worden op de beeldvormingsdata toegepast en openen nieuwe mogelijkheden.

Conclusie: hoe ver staat het hersenonderzoek?

U zult zich inmiddels afvragen of we inmiddels met al die nieuwe mogelijkheden en technieken weten hoe mensen kunnen spreken, dingen onthouden, gezichten herkennen, en emoties kunnen voelen? Wel euh…, niet helemaal. We weten al meer dan 30 jaar geleden, maar onze hersenen geven hun geheimen slechts zeer langzaam prijs…

Auteur: Guy Vingerhoets

Guy Vingerhoets (persoonlijke website) is neuropsycholoog en doet onderzoek naar de relatie tussen hersenen en gedrag. Zijn interessegebieden zijn neuropsychologie, functionele lateralisatie en motorische cognitie. Zijn voornaamste onderzoeksmethodes zijn functionele beeldvorming en gedragsonderzoek. Hij doceert neuropsychologische vakken aan verschillende faculteiten van de Universiteit Gent en is momenteel president van de Federation of the European Societies of Neuropsychology (FESN).